The cytoskeleton and cell signaling: component localization and mechanical coupling.

نویسنده

  • P A Janmey
چکیده

The three-dimensional intracellular network formed by the filamentous polymers comprising the cytoskeletal affects the way cells sense their extracellular environment and respond to stimuli. Because the cytoskeleton is viscoelastic, it provides a continuous mechanical coupling throughout the cell that changes as the cytoskeleton remodels. Such mechanical effects, based on network formation, can influence ion channel activity at the plasma membrane of cells and may conduct mechanical stresses from the cell membrane to internal organelles. As a result, both rapid responses such as changes in intracellular Ca2+ and slower responses such as gene transcription or the onset of apoptosis can be elicited or modulated by mechanical perturbations. In addition to mechanical features, the cytoskeleton also provides a large negatively charged surface on which many signaling molecules including protein and lipid kinases, phospholipases, and GTPases localize in response to activation of specific transmembrane receptors. The resulting spatial localization and concomitant change in enzymatic activity can alter the magnitude and limit the range of intracellular signaling events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

Effect of Stress-Fiber Inclusion on the Local Stiffness of Cell Cytoskeleton Probed by AFM Indentation: Insights from a Discrete Network Model

In this paper, we analyze the effect of stress-fiber inclusion on the stiffness of an actin random network. To do this, use a discrete random network model to analyze the elastic response of this system in terms of apparent Young’s modulus. First, we showed that for a flat-ended cylindrical AFM indenter the total indentation force has a linear relation with the indentation depth and the indente...

متن کامل

Molecular targets of pomegranate (Punica granatum) in preventing cancer metastasis

Metastasis is the primary cause of mortality and morbidity among cancer patients and accounts for about 90% of cancer deaths. The most common types of treatment for cancer metastasis are chemotherapy and radiotherapy. However, such therapy has many serious side effects that could diminish the quality of life in patients. There is increased appreciation by the scientific community that natural c...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

The Role of Microgravity in Cancer: A Dual-edge Sword

Since human beings could travel beyond the earth atmosphere, scientists started to investigate the effect of microgravity on human cells. Microgravity has different effects on normal and cancer cells, but the related mechanisms are not well-known till now. The aim of the present review is to focus on the consequences of exposing the cancer cells to reduced gravity. Some cancer cells organize th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological reviews

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 1998